變頻調(diào)速能量回饋控制技術(shù)的現(xiàn)狀與發(fā)展趨勢
1 引言
變頻調(diào)速技術(shù)涉及電子、電工、信息與控制等多個學(xué)科領(lǐng)域。采用變頻調(diào)速技術(shù)是節(jié)能降耗、改善控制性能、提高產(chǎn)品產(chǎn)量和質(zhì)量的重要途徑,已在應(yīng)用中取得了良好的應(yīng)用效果和顯著的經(jīng)濟效益[1]。但是,在對調(diào)速節(jié)能的一片贊譽中,人們往往忽視了進一步挖掘變頻調(diào)速系統(tǒng)節(jié)能潛力和提高效率的問題。事實上,從變頻器內(nèi)部研究和設(shè)計的方面看,應(yīng)用或?qū)で竽囊环N控制策略可以使變頻驅(qū)動電機的損耗最小而效率最高?怎樣才能使生產(chǎn)機械儲存的能量及時高效地回饋到電網(wǎng)?這正是提高效率的兩個重要途徑。第一個環(huán)節(jié)是通過變頻調(diào)速技術(shù)及其優(yōu)化控制技術(shù)實現(xiàn)"按需供能",即在滿足生產(chǎn)機械速度、轉(zhuǎn)矩和動態(tài)響應(yīng)要求的前提下,盡量減少變頻裝置的輸入能量;第二個環(huán)節(jié)是將由生產(chǎn)機械中儲存的動能或勢能轉(zhuǎn)換而來的電能及時地、高效地"回收"到電網(wǎng),即通過有源逆變裝置將再生能量回饋到交流電網(wǎng),一方面是節(jié)能降耗,另一方面是實現(xiàn)電動機的精密制動,提高電動機的動態(tài)性能。本文討論的就是變頻調(diào)速系統(tǒng)節(jié)能控制的第二個環(huán)節(jié)-變頻調(diào)速能量回饋控制技術(shù)。在能源資源日趨緊張的今天,這項研究無疑具有十分重要的現(xiàn)實意義。
2 通用變頻器在應(yīng)用中存在的問題
通用變頻器大都為電壓型交-直-交變頻器,基本結(jié)構(gòu)如圖1所示。三相交流電首先通過二極管不控整流橋得到脈動直流電,再經(jīng)電解電容濾波穩(wěn)壓,最后經(jīng)無源逆變輸出電壓、頻率可調(diào)的交流電給電動機供電。這類變頻器功率因數(shù)高、效率高、精度高、調(diào)速范圍寬,所以在工業(yè)中獲得廣泛應(yīng)用。但是通用變頻器不能直接用于需要快速起、制動和頻繁正、反轉(zhuǎn)的調(diào)速系統(tǒng),如高速電梯、礦用提升機、軋鋼機、大型龍門刨床、卷繞機構(gòu)張力系統(tǒng)及機床主軸驅(qū)動系統(tǒng)等。因為這種系統(tǒng)要求電機四象限運行,當(dāng)電機減速、制動或者帶位能性負(fù)載重物下放時,電機處于再生發(fā)電狀態(tài)。由于二極管不控整流器能量傳輸不可逆,產(chǎn)生的再生電能傳輸?shù)街绷鱾?cè)濾波電容上,產(chǎn)生泵升電壓。而以GTR、IGBT為代表的全控型器件耐壓較低,過高的泵升電壓有可能損壞開關(guān)器件、電解電容,甚至?xí)茐碾姍C的絕緣,從而威脅系統(tǒng)安全工作,這就限制了通用變頻器的應(yīng)用范圍[2]。
3 國內(nèi)外能量回饋技術(shù)研究現(xiàn)狀
為了解決電動機處于再生發(fā)電狀態(tài)產(chǎn)生的再生能量,德國西門子公司已經(jīng)推出了電機四象限運行的電壓型交-直-交變頻器,日本富士公司也成功研制了電源再生裝置,如RHR系列、FRENIC系列電源再生單元,它把有源逆變單元從變頻器中分離出來,直接作為變頻器的一個外圍裝置,可并聯(lián)到變頻器的直流側(cè),將再生能量回饋到電網(wǎng)中[3]。同時,已見到國外有四象限電壓型交-直-交變頻器及電網(wǎng)側(cè)脈沖整流器等的研制報道[4-9]。普遍存在的問題是這些裝置價格昂貴,再加上一些產(chǎn)品對電網(wǎng)的要求很高,不適合我國的國情。國內(nèi)在中小容量系統(tǒng)中大都采用能耗制動方式[10-13],即通過內(nèi)置或外加制動電阻的方法將電能消耗在大功率電阻器中,實現(xiàn)電機的四象限運行,該方法雖然簡單,但有如下嚴(yán)重缺點[14-18]:
(1) 浪費能量,降低了系統(tǒng)的效率。(2) 電阻發(fā)熱嚴(yán)重,影響系統(tǒng)的其他部分正常工作。(3) 簡單的能耗制動有時不能及時抑制快速制動產(chǎn)生的泵升電壓,限制了制動性能的提高(制動力矩大,調(diào)速范圍寬,動態(tài)性能好)。
上述缺點決定了能耗制動方式只能用于幾十kW以下的中小容量系統(tǒng)。國內(nèi)關(guān)于能量回饋控制的研究正在進行,但基本上都處于實驗階段,目前已經(jīng)見到有關(guān)的文獻報道[14-18],但尚未見這方面產(chǎn)品的報道。
4 能量回饋系統(tǒng)的拓?fù)浣Y(jié)構(gòu)
按照所選用的功率開關(guān)器件的不同,能量回饋系統(tǒng)的拓?fù)浣Y(jié)構(gòu)可分為半控器件型結(jié)構(gòu)和全控器件型結(jié)構(gòu)兩大類。
4.1 半控器件型(晶閘管型)結(jié)構(gòu)
由于晶閘管的耐壓、耐流、耐浪涌沖擊能力是全控型功率器件所無法比擬的,加之驅(qū)動、保護電路簡單,價格低廉等原因,采用晶閘管構(gòu)成有源逆變電路在七、八十年代獲得人們普遍的研究,即使在現(xiàn)階段也仍有一定的實際意義。下面將要介紹幾種基于晶閘管的有源逆變電路的結(jié)構(gòu)、基本原理以及優(yōu)、缺點的對比。
(1) 可控整流-可控有源逆變型
該方式是人們早期研究的一種方案?;舅悸肥窃诳煽卣鳂虻幕A(chǔ)上再反并聯(lián)一套有源逆變裝置,當(dāng)電動機處于電動狀態(tài)時,整流橋T’1~T’6工作;而當(dāng)電動機處于發(fā)電狀態(tài)時,隨著直流回路電壓的升高,三相可控整流器被封鎖,三相可控有源逆變器T1~T6工作,將能量回饋到電網(wǎng)中,同時該方式有效的阻斷了環(huán)流的發(fā)生。其主回路結(jié)構(gòu)如圖2所示。
眾所周知,在晶閘管逆變電路中,為保證逆變器換流的可靠性,對逆變角β有一定的限制,即βmin=300,同時為滿足有源逆變的條件,避免直流環(huán)流,還應(yīng)使變頻器的最高直流側(cè)電壓Udmax小于逆變電壓Uβmin,即:
(1)
式中:E為電源相電壓有效值, △Um為允許的最高泵升電壓。由(1)式可知,αmin應(yīng)大于βmin。于是帶來了兩個問題:
1) 較大的αmin將引起波形畸變干擾電網(wǎng),并降低了電網(wǎng)的功率因數(shù)。
2) 直流回路電壓降低將使常規(guī)380V交流電機得不到充分利用。
為此人們又提出了一種可行的解決辦法,就是將有源逆變器通過升壓變壓器與電網(wǎng)相連,整流電路改為不可控。顯然,波形和功率因數(shù)都可得到改善,升壓變壓器可以切斷上下橋臂產(chǎn)生的直流環(huán)流,同時為了限制交流環(huán)流以及滿足有源逆變條件在電路中設(shè)置了電抗器,但它又有如下缺點:
1) 增加的變壓器和環(huán)流電抗器使裝置的成本提高、體積增大。
2) 因只要Uα< Uβ就會啟動逆變裝置,使逆變橋頻繁工作,損耗增加;由于逆變電流較小,會使電流斷續(xù)而造成電網(wǎng)電流波形畸變,產(chǎn)生高次諧波,使功率因數(shù)降低。
雖然可以采用電壓、電流滯環(huán)控制方法來克服這一缺陷,但所有的控制均基于對逆變角β的控制,這就大大增加了β角的控制難度。特別是在發(fā)生誤觸發(fā)時,沒有有效的方法防止有源逆變器顛覆而產(chǎn)生的短路電流。
(2) 可控整流/有源逆變復(fù)用型
Keiju.Matsui 等人提出了以下幾種拓?fù)浣Y(jié)構(gòu)[18-19],其基本思路是利用一套可控整流橋既完成整流,又實現(xiàn)有源逆變,這樣就可以減小裝置的體積,降低成本。
1) 多脈寬調(diào)制(MPWM)方式
主電路結(jié)構(gòu)如圖3所示。采用一個電抗器和一個大功率晶體管作為能量暫存環(huán)節(jié)。α<900時,晶閘管S1~S6工作在整流狀態(tài),Tr和Th不工作,電抗器L‘起續(xù)流作用;逆變時,α>900(β<900),一旦交流線電壓降為零,先開通大功率晶體管Tr,將能量暫時存在電感L中,當(dāng)電流達(dá)到 Tr的整定值時,關(guān)閉Tr,同時開通Th,由于電感L的續(xù)流作用,能量就通過晶閘管T?~T? 流回電網(wǎng),周而復(fù)始,就可以將再生能量回饋電網(wǎng)。二極管D 的作用是防止直流回路的短路電流通過Th流入電抗器L中。
這種方案的優(yōu)點是巧妙地利用一個整流橋同時實現(xiàn)整流和有源逆變兩種功能,結(jié)構(gòu)簡單,體積較小。缺點是它的輸出波形包含大量的低次奇次諧波,噪聲大,同時能量回饋過程間斷進行,回饋效率低,能量損耗較大,功率因數(shù)低。
為減少MPWM輸出波形包含的低次奇次諧波,進一步改善電路的結(jié)構(gòu),Keiju.Matsui等人提出了SPWM方式[20,21]。
2) 正弦波脈寬調(diào)制(SPWM)方式
該方式控制電路僅采用一只晶體管來實現(xiàn)能量的回饋控制,使電路的結(jié)構(gòu)更加簡單,且有效的抑制了低次諧波,但它需要晶閘管S1~S6的協(xié)調(diào)配合,同時該方案的開關(guān)損耗較大,能量回饋過程是間斷進行的。為了獲得連續(xù)的電流波形,Keiju.Matsui等人又提出了一種新的方案,即MCC方式。
3) 可調(diào)的庫克(MCC)方式
該方案是在MPWM方式的基礎(chǔ)上增加一只大型電容器,通過控制電容器的充放電來保證能量回饋過程的連續(xù),工作原理同MPWM一樣,先將再生能量儲存在電感中,待條件滿足后再將能量回饋到電網(wǎng)中。
該方案的優(yōu)點是可以連續(xù)的回饋再生能量,保證了電流的連續(xù)性,從而使回饋的功率較高,開關(guān)損耗較小,但由于引人了大型電容器,使裝置體積增大,成本提高,同時該電路輸出電流波形包含較大的低次奇次諧波成分,易造成負(fù)載轉(zhuǎn)矩脈動、噪聲較大。
(3) 滯環(huán)控制斬波-逆變回饋方式
上述幾種方案雖然都能實現(xiàn)能量回饋控制,但其缺點是顯而易見的,同時由于晶閘管存在強迫換流關(guān)斷的問題,導(dǎo)致對直流側(cè)電壓有限制,若直流側(cè)電壓過高,則有可能由于晶閘管換流關(guān)斷失敗而導(dǎo)致逆變顛覆,這就限制了它們的應(yīng)用。因此Dennis等人提出了一種基于晶閘管的新型回饋裝置[22]。其主電路結(jié)構(gòu)如圖4所示。 主回路主要包括三部分:同步整流器SR、母線換相器BC、電流調(diào)節(jié)器CR。其基本思想是當(dāng)直流母線電壓達(dá)到一定值時啟動該裝置,通過控制回饋電流的大小,將再生能量有效的回饋到電網(wǎng)中。為了避免整流與有源逆變在一點來回切換,回饋電流采用滯環(huán)控制方式。
該電路的工作原理如下:當(dāng)直流母線電壓達(dá)到一定值(如740V)時開通Q1,將能量回饋到電網(wǎng),同步整流器SR以a=1800的固定相位角工作。隨著回饋電流的增加,當(dāng)電流傳感器檢測到電流超過設(shè)定值時關(guān)斷Q1,此時回饋電流開始下降,當(dāng)電流降到下限設(shè)定值時再開通Q1,如此循環(huán)往復(fù)。母線換相器BC的作用有二:一是為晶閘管的換相提供零電壓鉗位,以保證它們可靠地關(guān)斷;二是在緊急狀態(tài)時為能耗制動提供回路。其中大功率晶體管Q2在每次晶閘管換相時都觸發(fā)導(dǎo)通一次,即每600相位角導(dǎo)通一次,為晶閘管提供零電壓鉗位,這樣就可以確保晶閘管可靠地?fù)Q相,并可以省去強迫換流電路[22]。
該方案采用電流滯環(huán)控制回饋電流,為一大類負(fù)載提供了一種切實可行的拓?fù)浞桨?,具有一定的通用性。其特點如下:
1) 可廣泛應(yīng)用于PWM交流傳動的能量回饋制動場合,克服了晶閘管強迫換相對直流側(cè)電壓限制的缺點?! ?) 這種結(jié)構(gòu)不產(chǎn)生任何異常的高次諧波電流成分,同時它控制方便,不需要輔助關(guān)斷電路,是一種經(jīng)濟可行的方式。3) 通過在回路中增加電阻R1和開關(guān)Q2,提供了能耗制動的可選方式,可以實現(xiàn)緊急制動。
基于晶閘管的再生能量回饋系統(tǒng)的優(yōu)點是:結(jié)構(gòu)和控制簡單,成本較低,耐壓和耐浪涌電流的能力較強,在大容量的逆變裝置中具有一定的優(yōu)勢。但是其缺點是顯而易見的:它輸入功率因數(shù)低;輸入側(cè)有高次諧波存在,諧波損耗大;需要復(fù)雜的輔助關(guān)斷電路,從而使裝置成本增加,體積增大,可靠性降低,動態(tài)響應(yīng)慢。故一般用于較大容量和對系統(tǒng)動態(tài)性能和快速性要求不太高的場合。
4.2 全控器件型結(jié)構(gòu)
全控型器件如GTR、MOSFET、IGBT或IPM具有開關(guān)頻率高、集成度高和動態(tài)響應(yīng)快等優(yōu)點。采用上述的全控型器件作為有源逆變的功率開關(guān)器件可以提高系統(tǒng)的效率,抑制諧波和機械噪聲,這使得基于全控型器件的能量回饋控制系統(tǒng)已經(jīng)成為研究的重點。目前國內(nèi)外流行的控制方式僅對電流回路進行滯環(huán)控制 [14-18],雖然控制方式和控制電路比較簡單,但系統(tǒng)的主要控制對象-回饋電流的控制精度難以保證,從而造成系統(tǒng)的動態(tài)性能和抗干擾性能較差,功能不夠完善。
作者設(shè)計了一種全新的控制方案[25-28],該方案采用PWM控制方式有效地克服了傳統(tǒng)控制方式的缺陷,提高了系統(tǒng)的控制精度和動態(tài)性能。如圖5所示。
回饋電流大小的控制是整個系統(tǒng)的核心環(huán)節(jié)。本系統(tǒng)創(chuàng)新之處是擯棄了傳統(tǒng)的滯環(huán)控制方式,采用了PID技術(shù)和PWM控制技術(shù),利用電壓型PWM控制芯片 SG3525A作為主控芯片進行閉環(huán)控制,綜合了滯環(huán)控制方式和PWM控制方式的優(yōu)點,克服了采用滯環(huán)控制時回饋電流波形差、其高頻分量大、控制不精確的缺限,提高了系統(tǒng)的控制精度、動態(tài)性能和抗干擾性能。
控制系統(tǒng)包括同步信號獲取電路、電壓檢測與控制電路、電流檢測與控制電路、以及故障檢測、顯示與保護電路。其中,同步信號電路是有源逆變的基礎(chǔ)和關(guān)鍵,回饋電流的檢測與控制則是系統(tǒng)的控制核心和難點。
同步信號獲取電路采用同步變壓器降壓全波整流法獲取。實驗表明,該方法線路簡單,精度高,可以很好地滿足控制系統(tǒng)的要求。
電壓檢測和控制電路采用高速高線性度光電耦合器TLP559將直流母線電壓線性地變?yōu)槿蹼妷盒盘枺撔盘柦?jīng)變換后為回饋電流提供控制信號,以決定是否開啟逆變裝置進行能量回饋。
電流檢測及控制電路使回饋系統(tǒng)成為閉環(huán)控制系統(tǒng)。能量回饋過程中,首先要保證回饋電流的大小要滿足回饋功率的要求。同時回饋電流的控制精度和紋波大小直接影響到系統(tǒng)的控制性能,因此對電流的實時檢測與控制是一個非常關(guān)鍵的環(huán)節(jié)。本系統(tǒng)采用霍爾電流傳感器對回饋電流進行檢測,霍爾電流傳感器的特點是體積小、響應(yīng)速度快、準(zhǔn)確度和線性度高,完全可以勝任電路的要求;采用PID調(diào)節(jié)器和SG3525A型PWM控制芯片進行脈寬調(diào)制,綜合了滯環(huán)控制方式和 PWM控制方式的優(yōu)點,使系統(tǒng)能快速、準(zhǔn)確地控制回饋能量。實驗結(jié)果表明電流控制完全符合設(shè)計要求。
系統(tǒng)提供交/直流過壓、欠壓、過流、缺相、交直流快熔保護和IPM故障等齊全保護措施,以保證系統(tǒng)和電路的正常工作,減小故障情況下的損失。
采用新型功率器件-智能功率模塊IPM是本系統(tǒng)的又一特色。IPM內(nèi)部集成了高速、低耗的IGBT芯片和優(yōu)化的門極驅(qū)動及過流、短路、欠壓和過熱保護電路,它提高了系統(tǒng)的性能和可靠性,降低了系統(tǒng)成本,縮短了產(chǎn)品開發(fā)周期,是值得推廣的產(chǎn)品開發(fā)途徑。
5 能量回饋技術(shù)的新發(fā)展--雙PWM控制技術(shù)[23]
交-直-交電壓型變頻器的主電路輸入側(cè)一般是經(jīng)三相不控橋式整流器向中間直流環(huán)節(jié)的濾波電容充電,然后通過PWM控制下的逆變器輸入到交流電動機上。雖然這樣的電路成本低、結(jié)構(gòu)簡單、可靠性高,但是由于采用三相橋式不控整流器使得功率因數(shù)低、網(wǎng)測諧波污染以及無法實現(xiàn)能量的再生利用等。消除對電網(wǎng)的諧波污染并提高功率因數(shù),實現(xiàn)電機的四象限運行以構(gòu)成變頻技術(shù)不可回避的問題。為此,PWM整流技術(shù)的研究,新型單位功率因數(shù)變流器的開發(fā),在國內(nèi)外引起廣泛的關(guān)注。傳統(tǒng)的制動方法是在中間直流環(huán)節(jié)電容兩端并聯(lián)電阻消耗能量,這既浪費了能量,又不可靠,而且制動慢;或者設(shè)置一套三相有源逆變系統(tǒng),但增加了變壓器,加大了回饋裝置的體積,增加了成本而且逆變電流波形畸變嚴(yán)重,電網(wǎng)污染重,功率因數(shù)低。而整流電路中采用自關(guān)斷器件進行PWM控制,可是電網(wǎng)側(cè)的輸入電流接近正弦波并且功率因數(shù)達(dá)到1,可以徹底解決對電網(wǎng)的污染問題。
由PWM整流器和PWM逆變器無需增加任何附加電路,就可實現(xiàn)系統(tǒng)的功率因數(shù)約等于1,消除網(wǎng)側(cè)諧波污染,能量雙向流動,方便電機四象限運行,同時對于各種調(diào)速場合,使電機很快達(dá)到速度要求,動態(tài)響應(yīng)時間短。圖3位變頻器雙PWM控制結(jié)構(gòu),其中ia*、ib*、ic*是與電網(wǎng)電壓ea、eb、ec具有同頻同相位的電流信號,經(jīng)PWM電流控制器與實際電流ia、、ib、 ic比較生成6路PWM開關(guān)信號控制整流器中開關(guān)元件導(dǎo)通和關(guān)斷,是實際電流跟隨ia*、ib*、ic*、網(wǎng)側(cè)功率因數(shù)約等于1。雙PWM控制技術(shù)的工作原理:①當(dāng)電機處于拖動狀態(tài)時,能量由交流電網(wǎng)經(jīng)整流器中間濾波電容充電,逆變器在PWM控制下降能量傳送到電機;②當(dāng)電機處于減速運行狀態(tài)時,由于負(fù)載慣性作用進入發(fā)電狀態(tài),其再生能量經(jīng)逆變器中開關(guān)元件和續(xù)流二極管向中間濾波電容充電,使中間直流電壓升高,此時整流器中開關(guān)元件在PWM控制下降能量饋如到交流電網(wǎng),完成能量的雙向流動。同時由于PWM整流器閉環(huán)控制作用,使電網(wǎng)電流與電壓同頻同相位,提高了系統(tǒng)的功率因數(shù),消除了網(wǎng)側(cè)諧波污染。
雙PWM控制技術(shù)打破了過去變頻器的統(tǒng)一結(jié)構(gòu),采用PWM整流器和PWM逆變器提高了系統(tǒng)功率因數(shù),并且實現(xiàn)了電機的四象限運行,這給變頻器技術(shù)增添了新的生機,形成了高質(zhì)量能量回饋技術(shù)的最新發(fā)展動態(tài)。
本文相關(guān)信息
- [有關(guān)專業(yè)] 變換氣制堿技術(shù)成為節(jié)能減排利器
- [新聞資訊] 變頻空調(diào)已成趨勢 國產(chǎn)品牌領(lǐng)先
- [新聞資訊] 變頻控制拒設(shè)計時應(yīng)注意的問題
- [新聞資訊] 國內(nèi)塑料機械企業(yè)搶灘非洲市場
- [新聞資訊] 變量泵系列注塑機-節(jié)能先鋒
- [新聞資訊] 國內(nèi)外私營模具企業(yè)的生產(chǎn)管理模式
- [新聞資訊] 國內(nèi)外隨車起重機現(xiàn)狀及發(fā)展趨勢
- [新聞資訊] 國內(nèi)壓路機市場2006年將出現(xiàn)攀升
- [新聞資訊] 變賣廢舊手機危險,個人信息泄密嚴(yán)重
- [有關(guān)專業(yè)] 變頻調(diào)速技術(shù)在細(xì)紗機上的應(yīng)用